INSTITUT FRANÇAIS DES SCIENCES ET TECHNOLOGIES DES TRANSPORTS. DE L'AMENAGEMENT ET DES RESEAUX

Acceptabilité dans l'innovation : pour une approche constructive

jean-marie.burkhardt@ifsttar.fr

Laboratoire de Psychologie des Comportements et des mobilités (LPC)

IFSTTAR - 25 allée des Marronniers

Satory F-78000 VERSAILLES

Plan

- Innovation?
- Conception, acceptabilité et utilité : une construction dynamique
- Outils/méthodes
- Conclusion

Innovation?

Economie

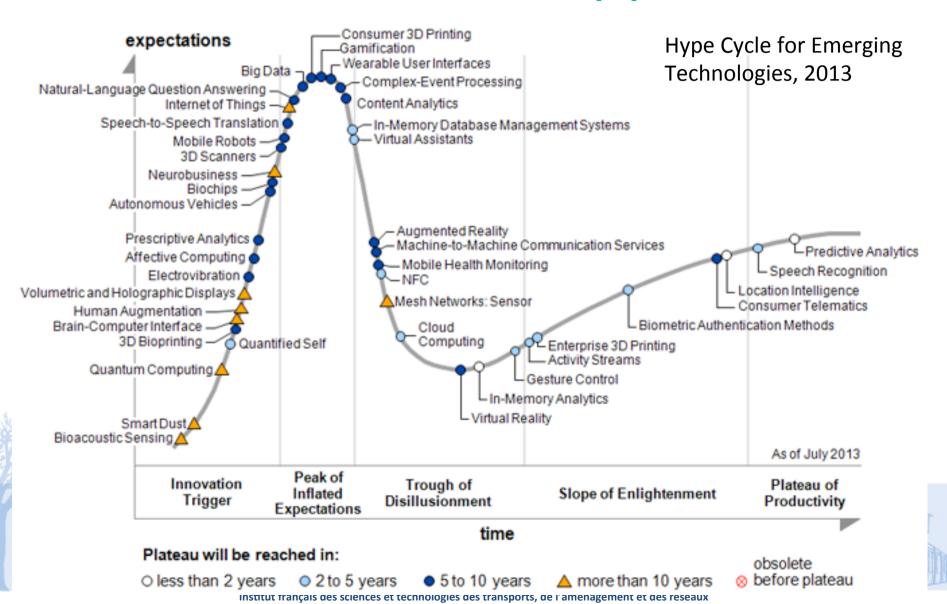
Introduction de nouveaux produits, de nouvelles méthodes de production, ouverture de nouveaux marchés, conquête de nouvelles sources d'approvisionnement et introduction de nouvelles formes d'organisation dans l'industrie (Schumpeter, 1934)


Perspective « produit »

- Nouveauté, différenciation de l'existant
- Succès
- Cycle de vie (Fenn, J. & Raskino M. (2008)

Schumpeter, J. (1934) The Theory of Economic Development, Cambridge, Mass: Harvard University Press

Fenn, J. & Raskino M. (2008). Mastering the Hype Cycle: How to Choose the Right Innovation at the Right Time. Boston, MA: Harvard Business Press


GERI USACT – Marne La Vallée 26/06/2015

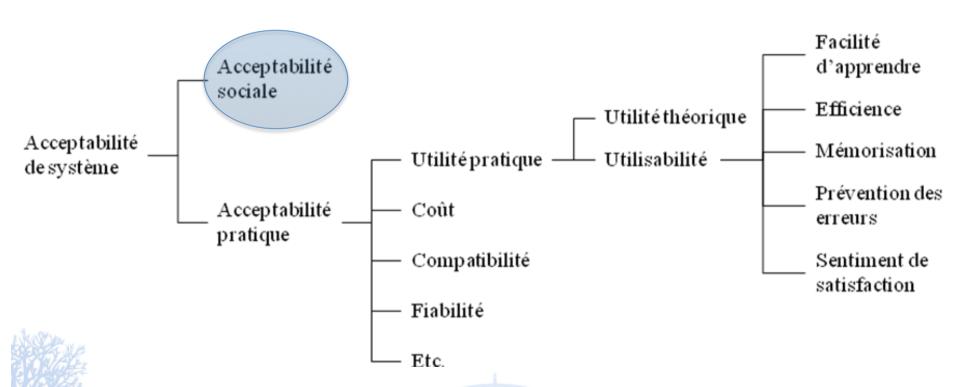
Fenn, J. & Raskino M. (2008). Mastering the Hype Cycle: How to Choose the Right Innovation at the Right Time. Boston, MA: Harvard Business Press

GERI USACT – Marne La Vallée 26/06/2015

Innovation? (2)

Innovation? (3)

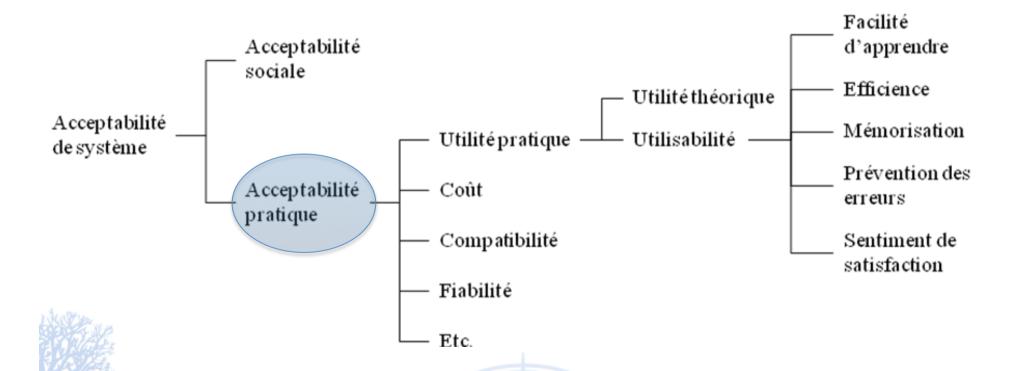
- Perspective « processus »
 - INNOVATION = Invention + diffusion
 - Invention vs. conception « créative »
 - Résolution de problèmes => élaboration de solutions permettant d'atteindre un but défini (Simon, 1995)
 - Créativité => production d'idées à la fois nouvelles/originales et adaptées (Lubart, 1994)
 - Contribution des utilisateurs: « products which better fit to users' needs, higher usability & acceptance by customers » (Kujala, 2003)
 - Place des utilisateurs dans le processus de conception et/ou innovation
 - Public consultation: « évaluateurs » de projets
 - User-centred design: « informateurs » sur les besoins et le contexte & « évaluateurs » des solutions testées
 - Participatory design: «co-conception », i.e. participe à toutes les étapes dans la mesure du possible (Sanders, 2006)
 - Conception continuée dans l'usage



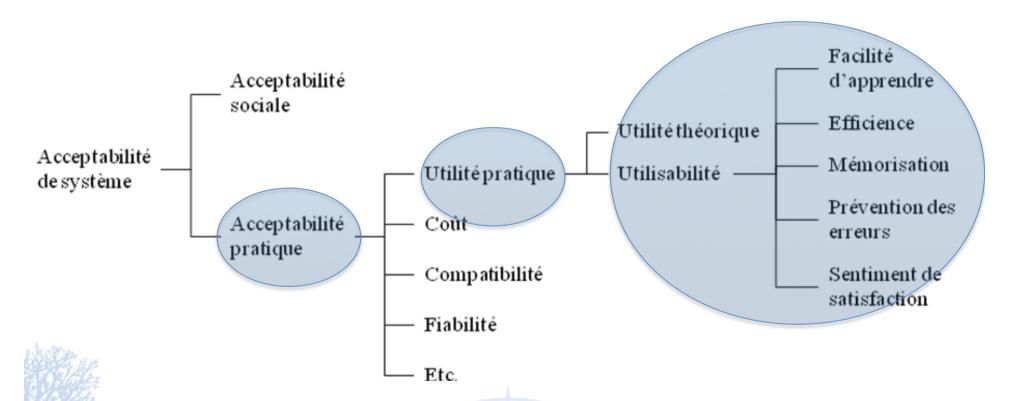
Innovation? (4)

Paradoxe de la conception/ innovation

- Caractère novateur => faible connaissance a priori par les acteurs (dont les utilisateurs!)
- Difficulté à prédire les usages tant que le dispositif n'existe pas/ n'est pas utilisé
- Des barrières à la contribution des utilisateurs
 - Où/qui sont les utilisateurs?
 - Utilisateurs perçus comme
 - peu compétents (Buur & Matthews, 2008)
 - conservateurs (Heiskanen et al, 2007)
 - Décalages socio-cognitifs (Cahour, 2002)

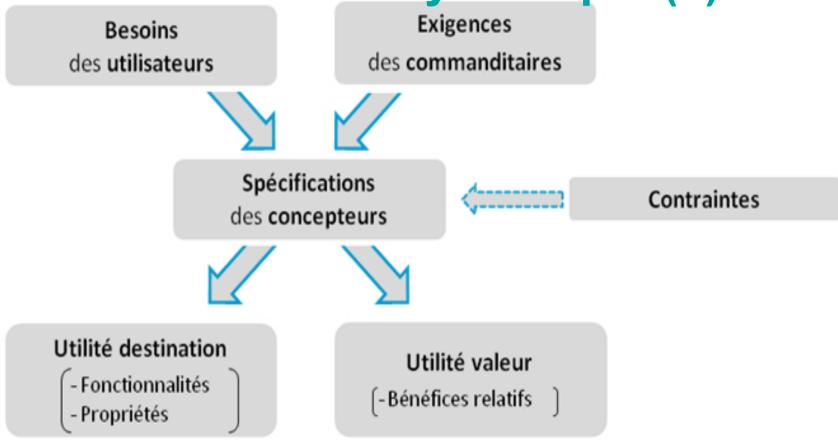

Conception, utilité et acceptabilité :une construction dynamique

Nielsen, J. (1993). Usability engineering. San Francisco, CA, USA: Morgan Kaufmann.

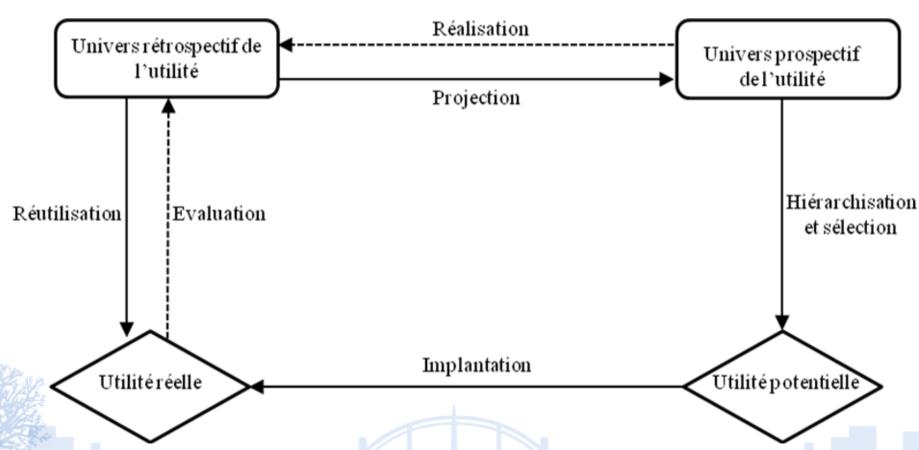

Conception, utilité et acceptabilité :une construction dynamique

GERI USACT – Marne La Vallée 26/06/2015

Nielsen, J. (1993). Usability engineering. San Francisco, CA, USA: Morgan Kaufmann.


Conception, utilité et acceptabilité :une construction dynamique

Nielsen, J. (1993). Usability engineering. San Francisco, CA, USA: Morgan Kaufmann.


Conception, utilité et acceptabilité :une construction dynamique (2)

Loup-Escande*, E., Burkhardt, J.-M., & Richir, S. (2013). Anticiper et évaluer l'utilité dans la conception ergonomique des technologies émergentes : une revue. *Le Travail Humain.* 76(1), 27-55

GERI USACT – Marne La Vallée 26/06/2015

Conception, utilité et acceptabilité :une construction dynamique (3)

Loup-Escande, E., Burkhardt, J.-M., & Richir, S. (2013). Anticiper et évaluer l'utilité dans la conception ergonomique des technologies émergentes : une revue. *Le Travail Humain.* 76(1), 27-55

GERI USACT – Marne La Vallée 26/06/2015

Conception, utilité et acceptabilité :une construction dynamique (4)

	Univers prospectif	Décision et	Univers rétrospectif
		Implémentation	
Utilité-destination	Production	Hiérarchisation et	Mesure et
	d'hypothèses sur	décisions quant	évaluation de la
	les fonctions, les	aux fonctions,	pertinence des
	services, les	services, dialogues	choix, identification
	dialogues et les	et interfaces à	des défaillances
	propriétés non-	développer	
	fonctionnelles		
Utilité-valeur	Production	Sélection et	Mesure et
d'hypothèses sur		opérationnalisation	évaluation des
	les bénéfices	des hypothèses	bénéfices et des
	quantitatifs et	privilégiées en	avantages
	qualitatifs attendus	termes de	
		bénéfices et	
		d'avantages	

Loup-Escande, E., Burkhardt, J.-M., & Richir, S. (2013). Anticiper et évaluer l'utilité dans la conception ergonomique des technologies émergentes : une revue. *Le Travail Humain. 76(1)*, 27-55

GERI USACT – Marne La Vallée 26/06/2015

Outils/méthodes

- Pour une approche constructive de l'acceptabilité : besoins et décisions sur l'utilité
 - Elaborer les besoins
 - Evaluer l'acceptabilité pour « mieux » concevoir
 - Comprendre et soutenir la participation des utilisateurs

Elaborer les besoins

- Activité de maintenance des véhicules
- Nouveaux modèles de véhicules
- Apport et développement d'outils de RA?

Anastassova, M., & Burkhardt, J.-M. (2009). Automotive technicians' training as a community-of-practice: implications for the design of an augmented reality teaching aid. *Applied Ergonomics*, 40, 713-721

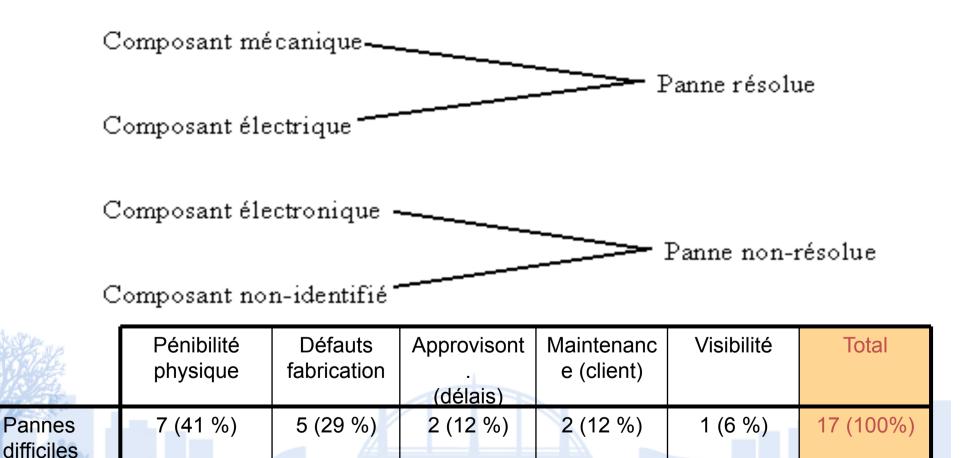
GERI USACT – Marne La Vallée 26/06/2015

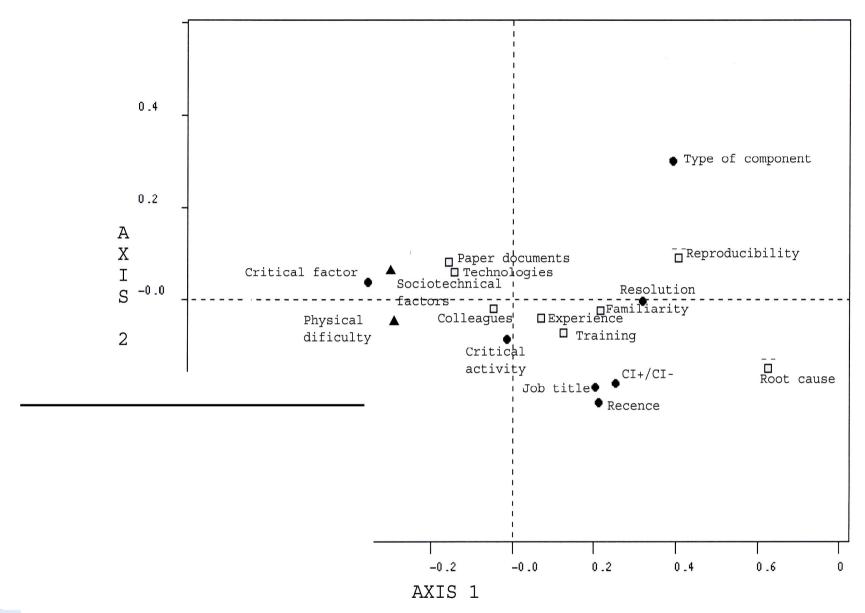
Elaborer les besoins (2)

- Etude Ergonomique
 - Analyse des difficultés et des besoins en formation
- Méthode
 - Observations ouvertes en formation (42 h/6j) et en atelier(62 h/9j)
 - Entretiens semi-dirigés avec technique des Incidents Critiques (81 IC)
- Sujets
 - 11 mécaniciens, 2 fonctions en atelier : MECA (N=5) et COTECH (N=6)

Anastassova, M., & Burkhardt, J.-M. (2009). Automotive technicians' training as a community-of-practice: implications for the design of an augmented reality teaching aid. *Applied Ergonomics*, 40, 713-721

Principaux résultats (1)


L'activité concerne surtout le diagnostic


	Diagnostic	Réparation	Total
COTECH	50 (79 %)	13 (21 %)	63 (100%)
MECA	14 (78 %)	4 (22 %)	18 (100%)
Total	64 (79 %)	17 (21 %)	81 (100%)

Anastassova, M., & Burkhardt, J.-M. (2009). Automotive technicians' training as a community-of-practice: implications for the design of an augmented reality teaching aid. *Applied Ergonomics*, 40, 713-721

Principaux résultats (2)

Origine et résolution

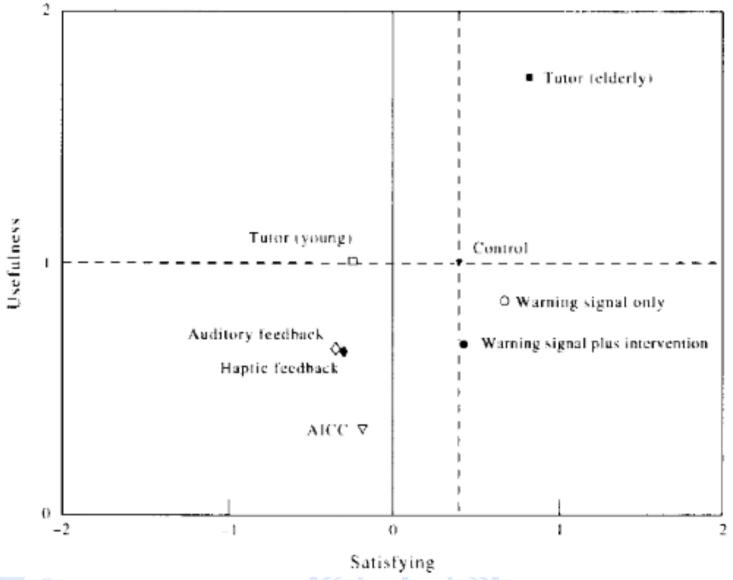
Besoins liés à l'activité dans la maintenance automobile : diagnostic vs. réparation (Anastassova, Burkhardt, Mégard, & Ehanno, 2005 ; 2009)

Evaluer l'acceptabilité pour « mieux » concevoir

 Analyses qualitatives (e.g. commentaires durant l'utilisation; mise en situation avec scenarios) associées à des données de comportement; questions ouvertes

- Questionnaires « adhoc »
- Quelques questionnaires standardisés

Evaluer l'acceptabilité pour « mieux » concevoir (2)


Acceptance scale : mesure l'attitude selon deux dimensions : utilité et satisfaction perçues

I find such a system / the (...) system (please tick a box on every line

1 Useful	_ Useless
2 Pleasant	_ Unpleasent
3 Bad	_ Good
4 Nice	_ Annoying
5 Effective	_ Superfluous
6 Irritating	_ _ Likeable
7 Assisting	_ Worthless
8 Undesirable	_ Desirable
9 Raising Alertness	_ Sleep-inducing

Van Der Laan, J. D., Heino, A., & De Waard, D. (1997). A simple procedure for the assessment of acceptance of advanced transport telematics. *Transportation Research Part C: Emerging Technologies*, 5(1), 1-10.

GERI USACT – Marne La Vallée 26/06/2015

Van Der Laan, J. D., Heino, A., & De Waard, D. (1997). A simple procedure for the assessment of acceptance of advanced transport telematics. *Transportation Research Part C: Emerging Technologies*, 5(1), 1-10.

Evaluer l'acceptabilité pour « mieux » concevoir (3)

System Usability Scale

(0)	Strongly Disagree			rongly Agree
 I think that I would like to use this product frequently. 	1 2	3	4	5
I found the product unnecessarily complex.	1 2	3	4	5
3. I thought the product was easy to use.	1 2	3	4	5
 I think that I would need the support of a technical person to be able to use this product. 	1 2	3	4	5
I found the various functions in the product were well integrated.	1 2	3	4	5
I thought there was too much inconsistency in this product.	1 2	3	4	5
I imagine that most people would learn to use this product very quickly.	1 2	3	4	5
I found the product very awkward to use.	1 2	3	4	5
I felt very confident using the product.	1 2	3	4	5
 I needed to learn a lot of things before I could get going with this product. 	1 2	3	4	5

Brooke, J. (1996). SUS: a "quick and dirty" usability scale. In P.W.Jordan, B. Thomas, B.A.Weerdmeester, and I.L. McClelland (Eds.) Usability Evaluation in Industry (189-194).London: Taylor and Francis

GERI USACT – Marne La Vallée 26/06/2015

Evaluer l'acceptabilité pour « mieux » concevoir (4)

System Usability Scale

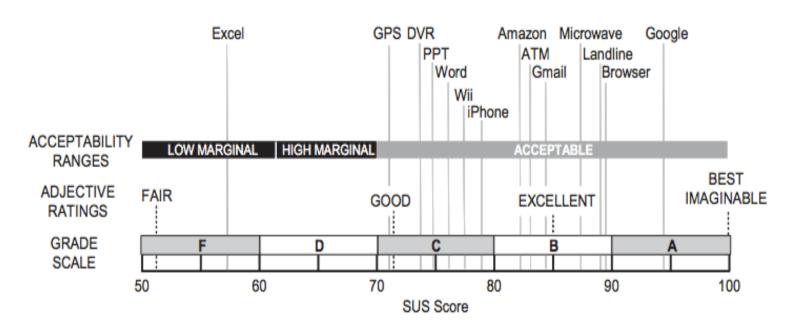


FIG. 4. Usability scores for the 14 products mapped onto the acceptability ranges proposed by Bangor, Kortum, and Miller (2009). *Note*. GPS = global positioning system; DVR = digital video recorder; PPT = PowerPoint; ATM = automated teller machine; SUS = System Usability Scale.

Kortum, P. T., & Bangor, A. (2013). Usability ratings for everyday products measured with the System Usability Scale. *International Journal of Human-Computer Interaction*, 29(2), 67-76

GERI USACT – Marne La Vallée 26/06/2015

Conclusion

- L'utilité et acceptabilité: deux dimensions coconstruites, dynamiques et évolutives
 - Utilité destination
 - Utilité valeur
 - Place des utilisateurs dans le processus
- Fonction et caractéristiques des outils de mesure de l'utilité et l'acceptabilité / activité de conception
 - Comparer
 - Suggérer les orientations/évolutions de l'artefact
- Maturité technologique, degré de diffusion comme médiateur de l'acceptabilité
- Méthodes pour la co-conception

Merci de votre attention

